The world’s leading publication for data science, AI, and ML professionals.

Integrating Ethnography and Data Science

Picture from Frank V
Picture from Frank V

As a data scientist and ethnographer, I have worked on many types of research projects. In professional and business settings, I am excited by the enormous growth in both Data Science and ethnography but have been frustrated by how, despite recent developments that make them more similar, their respective teams seem to be growing apart and competitively against each other.

Within academia, quantitative and qualitative research methods have developed historically as distinct and competing approaches as if one has to choose which direction to take when doing research: departments or individual researchers specialize in one or the other and fight over scarce research funding. One major justification for this division has been the perception that quantitative approaches tend to be prescriptive and top-down compared with qualitative approaches which tend to be to descriptive and bottom-up. That many professional research contexts have inherited this division is unfortunate.

Recent developments in data science draw parallels with qualitative research and if anything, could be a starting point for collaborative intermingling. What has developed as "traditional" statistics taught in introductory statistics courses is generally top-down, assuming that data follows a prescribed, ideal model and asking regimented questions based on that ideal model. Within the development of machine learning been a shift towards models uniquely tailored to the data and context in question, developed and refined iteratively.[i] These trends may show signs of breaking down the top-down nature of traditional statistics work.

Picture from Arif Wahid
Picture from Arif Wahid

If there was ever a time to integrate quantitative data science and qualitative ethnographic research, it is now. In the increasingly important "data economy," understanding users/consumers is vital to developing strategic business practices. In the business world, both socially-oriented data scientists and ethnographers are experts in understanding users/consumers, but separating them into competing groups only prevents true synthesis of their insights. Integrating the two should not just include combining the respective research teams and their projects but also encouraging researchers to develop expertise in both instead of simply specializing in one or the other. New creative energy could burst forth when we no longer treat these as distinct methodologies or specialties.

[i] Nafus, D., & Knox, H. (2018). Ethnography for a Data-Saturated World. Manchester: Manchester University Press, 11–12.


(The original publication is here: https://ethno-data.com/integrating-ethnography-and-data-science/. Feel free to check out the rest of the articles at: http://ethno-data.com /.)

Thank you Towards Data Science for publishing the article as well. For more details on their work, see this.


Related Articles