Artificial Neural Networks in Practice

And How ANNs Reshaped Many Industries

Ilija Mihajlovic
Towards Data Science

--

Image by Author, inspired by source. Link

This article is part of a much larger one i wrote: “Introduction To Artificial Intelligence — Neural Networks” If you want to learn more about artificial neural networks. Go check out my Medium profile where I publish articles about deep learning, machine learning, and iOS development regularly.

Now let’s learn about artificial neural networks. Shall we?😄

For what real-world applications are neural networks suited for? Good question! Neural networks have broad applicability to real world business problems. In fact, they have already been successfully applied in many industries.

Since neural networks are best at identifying patterns or trends in data, they are well suited for prediction or forecasting needs including:

  • Sales forecasting
  • Industrial process control
  • Customer research
  • Data validation
  • Risk management
  • Target marketing

But to give you some more specific examples; ANN are also used in the following specific paradigms: recognition of speakers in communications; diagnosis of hepatitis; recovery of telecommunications from faulty software; interpretation of multimeaning Chinese words; undersea mine detection; texture analysis; three-dimensional object recognition; hand-written word recognition; and facial recognition.

Neural networks in medicine

Artificial Neural Networks (ANN) are currently a ‘hot’ research area in medicine and it is believed that they will receive extensive application to biomedical systems in the next few years. At the moment, the research is mostly on modelling parts of the human body and recognizing diseases from various scans (e.g. cardiograms, CAT scans, ultrasonic scans, etc.).

Neural networks are ideal in recognizing diseases using scans since there is no need to provide a specific algorithm on how to identify the disease. Neural networks learn by example so the details of how to recognize the disease are not needed. What is needed is a set of examples that are representative of all the variations of the disease. The quantity of examples is not as important as the ‘quantity’. The examples need to be selected very carefully if the system is to perform reliably and efficiently.

Modelling and Diagnosing the Cardiovascular System

Neural Networks are used experimentally to model the human cardiovascular system. Diagnosis can be achieved by building a model of the cardiovascular system of an individual and comparing it with the real time physiological measurements taken from the patient. If this routine is carried out regularly, potential harmful medical conditions can be detected at an early stage and thus make the process of combating the disease much easier.

A model of an individual’s cardiovascular system must mimic the relationship among physiological variables (i.e., heart rate, systolic and diastolic blood pressures, and breathing rate) at different physical activity levels. If a model is adapted to an individual, then it becomes a model of the physical condition of that individual. The simulator will have to be able to adapt to the features of any individual without the supervision of an expert. This calls for a neural network.

Another reason that justifies the use of ANN technology, is the ability of ANNs to provide sensor fusion which is the combining of values from several different sensors. Sensor fusion enables the ANNs to learn complex relationships among the individual sensor values, which would otherwise be lost if the values were individually analysed. In medical modelling and diagnosis, this implies that even though each sensor in a set may be sensitive only to a specific physiological variable, ANNs are capable of detecting complex medical conditions by fusing the data from the individual biomedical sensors.

Electronic noses

ANNs are used experimentally to implement electronic noses. Electronic noses have several potential applications in telemedicine. Telemedicine is the practice of medicine over long distances via a communication link. The electronic nose would identify odours in the remote surgical environment. These identified odours would then be electronically transmitted to another site where an door generation system would recreate them. Because the sense of smell can be an important sense to the surgeon, telesmell would enhance telepresent surgery.

Neural Networks in business

Business is a diverted field with several general areas of specialisation such as accounting or financial analysis. Almost any neural network application would fit into one business area or financial analysis.

There is some potential for using neural networks for business purposes, including resource allocation and scheduling. There is also a strong potential for using neural networks for database mining, that is, searching for patterns implicit within the explicitly stored information in databases. Most of the funded work in this area is classified as proprietary. Thus, it is not possible to report on the full extent of the work going on. Most work is applying neural networks, such as the Hopfield-Tank network for optimization and scheduling.

Marketing

There is a marketing application which has been integrated with a neural network system. The Airline Marketing Tactician (a trademark abbreviated as AMT) is a computer system made of various intelligent technologies including expert systems. A feedforward neural network is integrated with the AMT and was trained using back-propagation to assist the marketing control of airline seat allocations. The adaptive neural approach was amenable to rule expression. Additionaly, the application’s environment changed rapidly and constantly, which required a continuously adaptive solution. The system is used to monitor and recommend booking advice for each departure. Such information has a direct impact on the profitability of an airline and can provide a technological advantage for users of the system. [Hutchison & Stephens, 1987]

While it is significant that neural networks have been applied to this problem, it is also important to see that this intelligent technology can be integrated with expert systems and other approaches to make a functional system. Neural networks were used to discover the influence of undefined interactions by the various variables. While these interactions were not defined, they were used by the neural system to develop useful conclusions. It is also noteworthy to see that neural networks can influence the bottom line.

Credit Evaluation

The HNC company, founded by Robert Hecht-Nielsen, has developed several neural network applications. One of them is the Credit Scoring system which increase the profitability of the existing model up to 27%. The HNC neural systems were also applied to mortgage screening. A neural network automated mortgage insurance underwritting system was developed by the Nestor Company. This system was trained with 5048 applications of which 2597 were certified. The data related to property and borrower qualifications. In a conservative mode the system agreed on the underwriters on 97% of the cases. In the liberal model the system agreed 84% of the cases. This is system run on an Apollo DN3000 and used 250K memory while processing a case file in approximately 1 sec.

Conclusion

The computing world has a lot to gain from neural networks. Their ability to learn by example makes them very flexible and powerful. Furthermore there is no need to devise an algorithm in order to perform a specific task; i.e. there is no need to understand the internal mechanisms of that task. They are also very well suited for real time systems because of their fast responseand computational times which are due to their parallel architecture.

Neural networks also contribute to other areas of research such as neurology and psychology. They are regularly used to model parts of living organisms and to investigate the internal mechanisms of the brain.

Perhaps the most exciting aspect of neural networks is the possibility that some day ‘consious’ networks might be produced. There is a number of scientists arguing that conciousness is a ‘mechanical’ property and that ‘consious’ neural networks are a realistic possibility.

Finally, I would like to state that even though neural networks have a huge potential we will only get the best of them when they are intergrated with computing, AI, fuzzy logic and related subjects.

If you want to get in touch and by the way, you know a good joke you can connect with me on Twitter or Linkedin.

Thanks for reading!😄 🙌

--

--

Lead IT service management consultant, and computer science graduate, with a passion for machine learning and computer vision.